CSE 210: Computer Architecture
Lecture 21: Floating Point

Stephen Checkoway
Oberlin College

Apr 15, 2022
Slides from Cynthia Taylor

Announcements

* Problem Set 6 due today

 Lab 5 due Sunday

e Office Hours today 13:30 - 14:30

Registers

* Each 32-bit register will consist of 32 1-bit D flip-flops

latch latch 0

Register File

Read register
number 1 Read
pr—
Read register data 1
number 2
. Register file
.| Write Read
EEEE—
register data 2
.| Write
data

* Set of registers that can be written/read by
supplying a register number

Read Function

Read register
number 1 |
Register 0 |———eo»
Register 1 1™ M
. = u » Read data 1
Register n—2|—e o *
Register n—1}¢ >

Read register
number 2 l

Y
=

» Read data 2

\

Write

Register number

Register data

Write Function

l Cc
(1) —J Register 0
& dg-(:(())c-!i: T \
o —J Register 1
=1 ~|D
—) 2
—J Register n—2
& >
)
—J Register n—1
a [2)

What will happen if we read and write to a register

in the same clock cycle?

A. The read will get the previous value
B. The read will get the just written value

C. Itis ambiguous

latch

Ol

D D b Q D
D. None of the above i c
A

o O

Register Questions?

Floating Point

* Problem: Need a way to store non-integer values

* Including numbers with very large and very small magnitudes

How Humans Do This

e Scientific Notation
e 1.2825 * 102
e 2.004 * 1038
e 3.74 * 10°%/
e -7.888889 * 1040

* Normalized Form

— Always multiply by power of 10
— Always 1 digit before the decimal point

How Computers Do This

* Floating Point Notation
¢ 1.11, x 22
* 1.0101, x 2127
» 1.110001, x 2-126
» -1.0001, x 280

* Normalized Form
— One digit before deeimal binary point
— Multiplied by power of two

101.10001,
101.10001, =22+ 29+ 21 + 27>

Integer partis 101,=4+1=5
Fractional part is 0.10001, = 1/2 + 1/2°> = 0.503125

Total is 5.503125

We know 101.10001, = 5.503125. What is
1.0110001, x 22

A. 1.37578125
B. 5.503125
C. 22.0125

D. None of the above

—17.125 in binary

Step 1. Convert integer part: 17 = 10001,
Step 2. Convert fractional part: .125=1/8 = 0.001,
Step 3. Add integer and fractional parts: 17.125 = 10001.001,

Step 4. Normalize: 10001.001, = 1.0001001, x 24

Step 5. Add sign: —17.125 =-1.0001001, x 2*

—0.75 In Binary is
A. —1.1,x 27
B. —1.1,x 22
C. -1.001011, x 272
D. —1.001011, x 272

E. None of the above

1.2825 * 107 in Binary is

. 1.000000001, x 27
. 1.000000001, x 2°
. 1.1001000011001, x 2°

. 1.000000001, x 2’

. None of the above

Want to Represent (-1)° * 1.x * 28 in 32 bits

Divide up 32 bits into different sections
1 bit for sign s (1 = negative, 0 = nonnegative)
8 bits for exponent e

23 bits for significand 1.x

Goal: Get the most out of 32 bits

* The first number before our deelmat binary point is always 1
—1.0001 * 24
—-1.1011 * 2-16

* We don’t need to represent it in our remaining 23 bits—it is
implicit!

(-1)° * 1.x * 2¢
1 bit for sign s (1 = negative, O = positive)
8 bits for exponent e

0 bits for implicit leading 1 (called the “hidden bit”)

23 bits for significand (without hidden bit)/fraction/mantissa x

sign exponent (8 bits) fraction (23 bits)
| | I I

olol1|1]1]1[1|ololol1|olololololo]olololololo]olololo]ololo]o]o
31 30 53 22 (bit index) 0

1.001100101 * 27 as a single word

* 1.001100101 * 27 as a single word becomes
— Sign = 0 (positive)
— Exponent = 00000111
— Significand = 00110010100000000000000

If we gave more bits to the exponent, and
fewer to the fraction, we could represent

. Fewer individual numbers

. More individual numbers

. Numbers with greater magnitude, but less precision

. Numbers with smaller magnitude, but greater precision

Want To Make Comparisons Easy

* Can easily tell if number is positive or negative
— Just check MSB bit

* Exponent isin higher magnitude bits than the fraction
— Numbers with higher values will look bigger
— 000000111 10000000000000000000000 = 1.1 * 27
— 0 00001000 10000000000000000000000 = 1.1 * 28

Problem with Two’s Compliment

0 00000111 10000000000000000000000 = 1.1 * 2/
0 00001000 10000000000000000000000 = 1.1 * 28
011111000 10000000000000000000000 = 1.1 * 28

Solution: Get rid of negative exponents!

— We can represent 28 = 256 numbers: normal exponents -126 to 127
and two special values for zero, infinity, (and NaN and subnormals)

— Add 127 to value of exponent to encode it, subtract 127 to decode

(-1)s * 1.x * 2¢
1 bit for sign s (1 = negative, 0 = positive)
8 bits for exponente + 127

0 bits for implicit leading 1 (called the “hidden bit”)

23 bits for significand (without hidden bit)/fraction/mantissa x

sign exponent (8 bits) fraction (23 bits)
| | I I

olola|2|2|2|2|0l0lol1|{0|0|l0|0|0O|O|O|O|O|O|O|O|O|O|O|O|O|O|O|0O|O] = 0.15625
3.1 :.’)O 2.3 52 (bit index) (.)

A

Encode 1.000000001 * 27 in 32-bit Floating Point
. 000000111 00000000100000000000000
0 00000111 10000000010000000000000
0 10000110 00000000100000000000000
0 10000110 10000000010000000000000

None of the above

Reading

* Next lecture: Floating Point

* Problem Set 6 due today

 Lab 5 due Sunday

